首页 > 代码库 > P1290 欧几里德的游戏
P1290 欧几里德的游戏
题目描述
欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:
Start:25 7
Stan:11 7
Ollie:4 7
Stan:4 3
Ollie:1 3
Stan:1 0
Stan赢得了游戏的胜利。
现在,假设他们完美地操作,谁会取得胜利呢?
输入输出格式
输入格式:
第一行为测试数据的组数C。下面有C行,每行为一组数据,包含两个正整数M, N。(M, N不超过长整型。)
输出格式:
对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”
输入输出样例
225 724 15
Stan winsOllie wins
设先手胜利与否为d(a,b),不妨设a>=b。
由“一个状态必胜当且仅当它的有至少一个后继状态必败”可以列出:
当a-b>b时,d(a,b)=(not d(a-b,b)) or (not d(a-2b,b)) or ... or (not d(a mod b,b)),
此时又有d(a-b,b)=(not d(a-2b,b)) or (not d(a-3b,b)) or ... or (not d(a mod b,b)),
代入得到d(a,b)=(not d(a-b,b)) or d(a-b,b)=true。
当a-b=b时,显然d(a,b)=true。
当a-b<b时,若a>b,有且只有一种决策,即d(a,b)=not d(b,a-b),若a=b,有d(a,b)=true。
将递归改为循环(实际意义为模拟每一局的策略)即可(数据水,也可以不改)。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 #include<queue> 6 #include<algorithm> 7 using namespace std; 8 const int MAXN=5001; 9 void read(int &n)10 {11 char c=‘+‘;int x=0;bool flag=0;12 while(c<‘0‘||c>‘9‘)13 {c=getchar();if(c==‘-‘)flag=1;}14 while(c>=‘0‘&&c<=‘9‘)15 {x=x*10+c-48;c=getchar();}16 flag==1?n=-x:n=x;17 }18 int main()19 {20 int T;21 read(T);22 while(T--)23 {24 int x,y;25 read(x);read(y);26 int now=1;27 if(x<y)swap(x,y);28 while(1)29 {30 if(x==y||x-y>=y)31 break;32 now=!now;33 int tmp=x-y;34 x=y;35 y=tmp;36 }37 if(now)38 printf("Stan wins\n");39 else 40 printf("Ollie wins\n");41 }42 43 return 0;44 }
P1290 欧几里德的游戏