首页 > 代码库 > POJ 2506-Tiling(递推+大数)
POJ 2506-Tiling(递推+大数)
Tiling
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7897 | Accepted: 3841 |
Description
In how many ways can you tile a 2xn rectangle by 2x1 or 2x2 tiles?
Here is a sample tiling of a 2x17 rectangle.
Here is a sample tiling of a 2x17 rectangle.
Input
Input is a sequence of lines, each line containing an integer number 0 <= n <= 250.
Output
For each line of input, output one integer number in a separate line giving the number of possible tilings of a 2xn rectangle.
Sample Input
2 8 12 100 200
Sample Output
3 171 2731 845100400152152934331135470251 1071292029505993517027974728227441735014801995855195223534251
50
ps:本以为要用求大数的方法写个函数,然后调用它,那也太麻烦了,然后飞神告诉了我这个方法,太神奇了,总共才250,250*110果断爆不了。用二维数组存储大数的每一位。感觉我还是太年轻 sad~#include <stdio.h> #include <string.h> #include <stdlib.h> char a[310][120]; int main() { int n,i,j; memset(a,'0',sizeof(a)); a[0][0]='1'; a[1][0]='1'; a[2][0]='3'; for(i=3; i<=250; i++) { for(j=0; j<110; j++) { int sum=2*(a[i-2][j]-'0')+a[i-1][j]-'0'+a[i][j]-'0'; a[i][j]=sum%10+'0'; a[i][j+1]=sum/10+'0'; } } while(~scanf("%d",&n)) { int flag=0; for(i=110; i>=0; i--) if(a[n][i]!='0') { flag=i; break; } for(i=flag; i>=0; i--) printf("%c",a[n][i]); printf("\n"); } return 0; }
POJ 2506-Tiling(递推+大数)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。