首页 > 代码库 > nyoj 741

nyoj 741

Splits the string

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述
Hrdv is interested in a string,especially the palindrome string.So he wants some palindrome string.
 
A sequence of characters is a palindrome if it is the same written forwards and backwards. For example, ‘abeba‘ is a palindrome, but ‘abcd‘ is not.
 
A partition of a sequence of characters is a list of one or more disjoint non-empty groups of consecutive characters whose concatenation yields the initial sequence. For example, (‘race‘, ‘car‘) is a partition of ‘racecar‘ into two groups.
 
Given a sequence of characters, we can always create a partition of these characters such that each group in the partition is a palindrome! Given this observation it is natural to ask: what is the minimum number of groups needed for a given string such that every group is a palindrome?
 
For example:
 
‘racecar‘ is already a palindrome, therefore it can be partitioned into one group.
‘fastcar‘ does not contain any non-trivial palindromes, so it must be partitioned as (‘f‘, ‘a‘, ‘s‘, ‘t‘, ‘c‘, ‘a‘, ‘r‘).
‘aaadbccb‘ can be partitioned as (‘aaa‘, ‘d‘, ‘bccb‘).
Input begins with the number n of test cases. Each test case consists of a single line of between 1 and 1000 lowercase letters, with no whitespace within.
 
 
输入
Each test case consists of a single line of between 1 and 1000 lowercase letters, with no whitespace within.
输出
For each test case, output a line containing the minimum number of groups required to partition the input into groups of palindromes.
样例输入
racecarfastcaraaadbccb
样例输出
173
上传者
TC_胡仁东

 

/*用dp[i] 记录从0到当前i位置这一段最少由几个回文子串组成,动态转移方程:dp[i] = min(dp[i],dp[j-1]+1);*/#include<stdio.h>#include<string.h>#include<algorithm>using namespace std;char str[1010];int dp[1010];bool judge(int x,int y) //判断是不是回文串{while(x <= y){if(str[x] != str[y])return false;x++;y--;}return true;}int main(){int len, i, j;while(gets(str) != NULL){len = strlen(str);for(i = 0; i < len; i++){dp[i] = i + 1; for(j = 0; j <= i; j++)if(str[j] == str[i] && judge(j,i))dp[i] = min(dp[i], dp[j-1]+1);}printf("%d\n",dp[len-1]);}return 0;}

  

nyoj 741