首页 > 代码库 > 5656

5656

$\bf命题1:$设$f(x)$是$\left[ {1, + \infty } \right)$上的非负单调减少函数,令

an=k=1nf(k)?n1f(x)dx,nN+
<script id="MathJax-Element-1" type="math/tex; mode=display">{a_n} = \sum\limits_{k = 1}^n {f\left( k \right)} - \int_1^n {f\left( x \right)dx} ,n \in {N_ + }</script>
证明:数列$\left\{ {{a_n}} \right\}$收敛

证明:由$f(x)$在$\left[ {1, + \infty } \right)$上单调减少知,$f(x)$在$\left[ {n,n + 1} \right]$上可积,且

f(n+1)n+1nf(x)dxf(n),nN+
<script id="MathJax-Element-2" type="math/tex; mode=display">\begin{equation}\label{eq1}f\left( {n + 1} \right) \le \int_n^{n + 1} {f\left( x \right)dx} \le f\left( n \right),n \in {N_ + }\end{equation}</script>

从而可知

an+1?an=f(n+1)?n+1nf(x)dx0
<script id="MathJax-Element-3" type="math/tex; mode=display">\begin{equation}\label{eq2}{a_{n + 1}} - {a_n} = f\left( {n + 1} \right) - \int_n^{n + 1} {f\left( x \right)dx} \le 0\end{equation}</script>
即$\left\{ {{a_n}} \right\}$单调减少;而又由$\eqref {eq1}$知

an=k=1nf(k)?n1f(x)dxk=1nk+1kf(x)dx?n1f(x)dx=n+1nf(x)dxf(n+1)0 
<script id="MathJax-Element-4" type="math/tex; mode=display">\begin{align}\label{eq3} {a_n} &= \sum\limits_{k = 1}^n {f\left( k \right)} - \int_1^n {f\left( x \right)dx} \nonumber\\& \ge \sum\limits_{k = 1}^n {\int_k^{k + 1} {f\left( x \right)dx} } - \int_1^n {f\left( x \right)dx}\\& = \int_n^{n + 1} {f\left( x \right)dx} \ge f\left( {n + 1} \right) \ge 0 \nonumber\end{align}</script>
即$\left\{ {{a_n}} \right\}$有上界,故由$\eqref {eq2}$,$\eqref {eq3}$及单调有界原理知数列$\left\{ {{a_n}} \right\}$收敛