首页 > 代码库 > 再寄小读者之数学篇[2014.07.01-2014.12.31]

再寄小读者之数学篇[2014.07.01-2014.12.31]

[再寄小读者之数学篇](2014-07-09 多项式的辗转相除与线性变换)

设 $V$ 是由次数不超过 $4$ 的一切实系数一元多项式组成的向量空间. 对于 $V$ 上的任意多项式 $f(x)$, 以 $x^2-1$ 除 $f(x)$ 所得的商式及余式分别为 $q(x)$ 和 $r(x)$, 记 $$\bex f(x)=q(x)(x^2-1)+r(x). \eex$$ 设 $\scrA$ 是 $V$ 到 $V$ 的映射, 使得 $$\bex \scrA(f(x))=r(x). \eex$$ 试证: $\scrA$ 是一个线性变换, 并求它关于基底 $\sed{1,x,x^2,x^3,x^4}$ 的矩阵.

 

[再寄小读者之数学篇](2014-07-09 不可约多项式与重根)

设 $\mathbb{P}$ 为数域, 如果 $p_1(x),\cdots,p_r(x)$ 是数域 $\mathbb{P}$ 上的 $r$ 个两两不同的首相系数为 $1$ 的不可约多项式, 证明: $f(x)=p_1(x)\cdots p_r(x)$ 在数域 $\mathbb{P}$ 上无重根.