首页 > 代码库 > [詹兴致矩阵论习题参考解答]习题1.1
[詹兴致矩阵论习题参考解答]习题1.1
1. 设 $a_1,\cdots,a_n$ 为正实数, 证明矩阵 $$\bex \sex{\frac{1}{a_i+a_j}}_{n\times n} \eex$$ 半正定.
证明: $$\beex \bea \sum_{i,j=1}^n \frac{1}{a_i+a_j}x_ix_j &=\sum_{i,j=1}^n x_ix_j\int_0^1 t^{a_i+a_j-1}\rd t\\ &=\int_0^1 \sum_{i=1}^n t^{a_i-\frac{1}{2}}x_i\cdot \sum_{j=1}^n t^{a_j-\frac{1}{2}}x_j\rd t\\ &=\int_0^1 y^2(t,x)\rd t\quad\sex{y(t,x)=\sum_{i=1}^n t^{a_i-\frac{1}{2}}x_i}\\ &\geq 0. \eea \eeex$$
[詹兴致矩阵论习题参考解答]习题1.1
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。