首页 > 代码库 > 05626

05626


limxa+f(x)=limx+f(x)=A
<script id="MathJax-Element-1" type="math/tex; mode=display">\mathop {\lim }\limits_{x \to \begin{array}{*{20}{c}} {{a^ + }} \end{array}} f\left( x \right) = \mathop {\lim }\limits_{x \to \begin{array}{*{20}{c}} { + \infty } \end{array}} f\left( x \right) = A</script>

其中$A$是有限数或$\pm \infty $

若$f\left( x \right) = A$,则结论显然成立;若$f\left( x \right) \ne A$,则存在${x_0} \in \left( {a, + \infty } \right)$,使得$f\left( {{x_0}} \right) \ne A$.

不妨设$f\left( {{x_0}} \right) > A$,则由实数的稠密性知,存在${\varepsilon _0} > 0$,使得

f(x0)>f(x0)?ε0>A
<script id="MathJax-Element-2" type="math/tex; mode=display">f\left( {{x_0}} \right) > f\left( {{x_0}} \right) - {\varepsilon _0} > A</script>

由$\lim \limits_{x \to

a+
<script id="MathJax-Element-3" type="math/tex; mode=display">\begin{array}{*{20}{c}} {{a^ + }} \end{array}</script>} f\left( x \right) = A < A + {\varepsilon _0}$及极限的保号性知
?δ>0,?x(a,a+δ),f(x)<A+ε0
<script id="MathJax-Element-4" type="math/tex; mode=display">\exists \delta > 0,\forall x \in \left( {a,a + \delta } \right),有f\left( x \right) < A + {\varepsilon _0}</script>

特别地,取${x_1} \in \left( {a,a + \delta } \right)$,且${x_1} < {x_0}$,则

f(x1)<A+ε0<f(x0)
<script id="MathJax-Element-5" type="math/tex; mode=display">f\left( {{x_1}} \right) < A + {\varepsilon _0} < f\left( {{x_0}} \right)</script>

由连续函数介值定理知,存在${\xi _1} \in \left( {{x_1},{x_0}} \right)$,使得

f(ξ1)=A+ε0
<script id="MathJax-Element-6" type="math/tex; mode=display">f\left( {{\xi _1}} \right) = A + {\varepsilon _0}</script>

由$\lim \limits_{x \to

+
<script id="MathJax-Element-7" type="math/tex; mode=display">\begin{array}{*{20}{c}} { + \infty } \end{array}</script>} f\left( x \right) = A < A + {\varepsilon _0}$及极限的保号性知
?M>a,?x>M,f(x)<A+ε0
<script id="MathJax-Element-8" type="math/tex; mode=display">\exists M > a,\forall x > M,有f\left( x \right) < A + {\varepsilon _0}</script>


特别地,取${x_2} \in \left( {M, + \infty } \right)$,且${x_0} < {x_2}$,则

f(x2)<A+ε0<f(x0)
<script id="MathJax-Element-9" type="math/tex; mode=display">f\left( {{x_2}} \right) < A + {\varepsilon _0} < f\left( {{x_0}} \right)</script>

由连续函数介值定理知,存在${\xi _2} \in \left( {{x_0},{x_2}} \right)$,使得

f(ξ2)=A+ε0
<script id="MathJax-Element-10" type="math/tex; mode=display">f\left( {{\xi _2}} \right) = A + {\varepsilon _0}</script>

由$Rolle$中值定理知,存在$\xi \in \left( {{\xi _1},{\xi _2}} \right)$,使得

f(ξ)=0
<script id="MathJax-Element-11" type="math/tex; mode=display">f‘\left( \xi \right) = 0</script>