首页 > 代码库 > 青蛙的约会
青蛙的约会
题目描述
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
输入输出格式
输入格式:
输入只包括一行5个整数x,y,m,n,L
其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。
输出格式:
输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。
输入输出样例
1 2 3 4 5
4
说明
各个测试点2s
这是个追击问题,当 “(x+m*t)-(y+n*t)=p*l” (t为时间,p为圈数之差)时两青蛙相遇。
令a=n-m,b=l,d=x-y,c=gcd(a,b).
变形一下可得到“a*t+p*b=d” (一) 很明显用扩展欧几里得算法可以得到一组(t0,p0)使得a*t+p*b=c(二)成立
但是我要的是令(一)满足的t,即t=t0*(d/c)才是符合条件的;
然而还有一个问题-----t得出来的可能是负数,所以要转正一下。
在程序上,先判断一下有没有解,如果 d%c不为零则无解
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; #define LL long long LL x,y,m,n,l; LL gcd(LL a,LL b,LL &x,LL &y) { LL ret,tmp; if(!b) { x=1; y=0; return a; } ret=gcd(b,a%b,x,y); tmp=x; x=y; y=tmp-a/b*y; return ret; } int main() { scanf("%lld%lld%lld%lld%lld",&x,&y,&m,&n,&l); LL c=x-y,a=n-m,b=l,X,Y; if(a<0) a=-a,c=-c; LL g=gcd(a,b,X,Y); if(c%g!=0) printf("Impossible\n"); else { l=l/g;//其实这里为什么这样处理我也不知道 cout<<((X*(c/g)%l+l)%l)<<endl; } return 0; }
青蛙的约会