首页 > 代码库 > P3398 仓鼠找sugar

P3398 仓鼠找sugar

P3398 仓鼠找sugar

题目描述

小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n。地下洞穴是一个树形结构。这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室(c)到图书馆(d)。他们都会走最短路径。现在小仓鼠希望知道,有没有可能在某个地方,可以碰到他的基友?

小仓鼠那么弱,还要天天被zzq大爷虐,请你快来救救他吧!

输入输出格式

输入格式:
 

 

第一行两个正整数n和q,表示这棵树节点的个数和询问的个数。

接下来n-1行,每行两个正整数u和v,表示节点u到节点v之间有一条边。

接下来q行,每行四个正整数a、b、c和d,表示节点编号,也就是一次询问,其意义如上。

 

输出格式:
 

 

对于每个询问,如果有公共点,输出大写字母“Y”;否则输出“N”。

 

输入输出样例

输入样例#1:
 
5 52 54 21 31 45 1 5 12 2 1 44 1 3 43 1 1 53 5 1 4
输出样例#1:
 
YNYYY

说明

本题时限1s,内存限制128M,因新评测机速度较为接近NOIP评测机速度,请注意常数问题带来的影响。

20%的数据 n<=200,q<=200

40%的数据 n<=2000,q<=2000

70%的数据 n<=50000,q<=50000

100%的数据 n<=100000,q<=100000

 

 

 

 

解析:

//第一遍做是找出公共祖先,然后遍历路径,毫无疑问的TLE了,题解好棒
正解:

设从A到B,经过的深度最小的点为X 同理,C,D的为Y
题目是一个点从A出发到B 一个从C出发到D
那么从A到B可以分解成 先从A到X 再从X到B。。。 C同理
假设能相遇 那么
要么在A到X的过程A,B相遇 要么在X到B的过程A,B相遇
对于在A到X的过程相遇的情况 又可以分解为:
情况1:
在A到X的过程和 C到Y的过程 中A,B相遇 此时相遇点的深度必然大于等于Max(X深度,Y深度)
情况2:
在A到X的过程和 Y到D的过程 中A,B相遇 此时相遇点的深度必然大于等于Max (X深度,Y深度)
另一种情况同理。。。
所以显然只要求出Max=max(lca(a,b),lca(c,d));(lca返回的是两个点公共祖先的最大深度
假如lca(a,c) lca(a,d) lca(b,c) lca(b,d) 中有任意一个大于等于MIN 的话 那么可以相遇 否则不能

AC代码:

#include<cstdio>#include<iostream>using namespace std;inline int read(){    register int x=0;bool f=1;    register char ch=getchar();    while(ch<0||ch>9){if(ch==-)f=0;ch=getchar();}    while(ch>=0&&ch<=9){x=(x<<3)+(x<<1)+ch-0;ch=getchar();}    return f?x:-x;}const int N=1e5+10;int n,m,tot,head[N],dep[N],f[N][21];struct node{    int v,next;}e[N<<1];void add(int x,int y){    e[++tot].v=y;    e[tot].next=head[x];    head[x]=tot;}void dfs(int x){    for(int v,i=head[x];i;i=e[i].next){        if(!dep[v=e[i].v]){            f[v][0]=x;            dep[v]=dep[x]+1;            dfs(v);        }    }}int lca(int a,int b){    if(dep[a]<dep[b]) swap(a,b);    int t=dep[a]-dep[b];    for(int i=0;i<=20;i++){        if((1<<i)&t){            a=f[a][i];        }    }    if(a==b) return dep[a];    for(int i=20;i>=0;i--){        if(f[a][i]!=f[b][i]){            a=f[a][i];            b=f[b][i];        }    }    return dep[f[a][0]];}int main(){    n=read();m=read();    for(int i=1,x,y;i<n;i++){        x=read();y=read();        add(x,y);add(y,x);    }    dep[1]=1;    dfs(1);    for(int j=1;j<=20;j++){        for(int i=1;i<=n;i++){            f[i][j]=f[f[i][j-1]][j-1];        }    }    for(int MAX,A,B,C,D,i=1;i<=m;i++){        A=read();B=read();C=read();D=read();        MAX=max(lca(A,B),lca(C,D));        if(lca(A,C)>=MAX||lca(A,D)>=MAX||lca(B,C)>=MAX||lca(B,D)>=MAX) puts("Y");        else puts("N");    }    return 0;}

 

 

 

P3398 仓鼠找sugar