首页 > 代码库 > [詹兴致矩阵论习题参考解答]目录

[詹兴致矩阵论习题参考解答]目录

说明: 

1. 有些是自己做的, 而有些是参考文献后再做的.

2. 如果您有啥好的想法, 好的解答, 热切的欢迎您告知我, 或者在相应的习题解答网页上回复. 哪里有错误, 也盼望您指出.

3. 毕竟大学时学过高等代数, 想多学点矩阵论的东西 (matrix=magic), 就先选这本书看看了.

 

 

第一章 预备知识

[詹兴致矩阵论习题参考解答]习题1.1

  1. 设 $a_1,\cdots,a_n$ 为正实数, 证明矩阵 $$\bex \sex{\frac{1}{a_i+a_j}}_{n\times n} \eex$$ 半正定.

 

[詹兴致矩阵论习题参考解答]习题1.2

  2. (Oldenburgere) 设 $A\in M_n$, $\rho(A)$ 表示 $A$ 的谱半径, 即 $A$ 的特征值的模的最大者. 证明: $$\bex \vlm{k}A^k=0\lra \rho(A)<1. \eex$$

 

[詹兴致矩阵论习题参考解答]习题1.3

  3. 证明数值半径 $w(\cdot)$ 是 $M_n$ 上的一个范数.

 

[詹兴致矩阵论习题参考解答]习题1.4

  4. 证明数值半径 $w(\cdot)$ 和谱范数 $\sen{\cdot}_\infty$ 满足如下关系: $$\bex \frac{1}{2}\sen{A}_{\infty} \leq w(A)\leq \sen{A}_\infty,\quad A\in M_n. \eex$$

 

[詹兴致矩阵论习题参考解答]习题1.5

  5. (Gelfand) 设 $A\in M_n$, 证明: $$\bex \rho(A)=\vlm{k}\sen{A^k}_\infty^\frac{1}{k}. \eex$$

 

[詹兴致矩阵论习题参考解答]习题1.6

  6. 设 $A\in M_{m,n}$, $B\in M_{n,m}$. 证明: $$\bex \sex{\ba{cc} AB&0\\ B&0 \ea}\mbox{ 和 }\sex{\ba{cc} 0&0\\ B&BA \ea} \eex$$ 相似, 从而给出定理 1.14 的另一个证明.

 

[詹兴致矩阵论习题参考解答]习题1.7

  7. 设 $A_j\in M_n$, $j=1,\cdots,m$, $m>n$, 且 $\dps{\sum_{j=1}^m A_j}$ 非奇异 (即可逆). 证明: 存在 $S\subset \sed{1,2,\cdots,m}$ 满足 $|S|\leq n$ 且 $\dps{\sum_{j\in S}A_j}$ 非奇异.

 

[詹兴致矩阵论习题参考解答]习题1.8

  8. 证明任何一个复方阵都酉相似于某个对角元素全部相等的矩阵.

 

[詹兴致矩阵论习题参考解答]习题1.9 

  9. 证明对任意的复方阵 $A$, $$\bex \rho(A)\leq w(A)\leq \sen{A}_\infty. \eex$$

 

[詹兴致矩阵论习题参考解答]习题1.10

  10. 矩阵 $A=(a_{ij})\in M_n$ 称为严格对角占优, 如果 $$\bex |a_{ii}|>\sum_{j\neq i}|a_{ij}|,\quad i=1,\cdots,n. \eex$$ 证明: 严格对角占优矩阵是可逆的.

 

[詹兴致矩阵论习题参考解答]习题1.11

  11.  (Gersgorin 圆盘定理) 用 $\sigma(A)$ 表示 $A=(a_{ij})\in M_n$ 的特征值的集合, 记 $$\bex D_i=\sed{z\in\bbC;\ |z-a_{ii}|\leq \sum_{j\neq i}|a_{ij}|},\quad i=1,\cdots,n. \eex$$ 证明: $$\bex \sigma(A)\subset \cup_{i=1}^n D_i, \eex$$ 并且如果这些圆盘 $D_i$ 中有 $k$ 个与其余的 $n-k$ 个不相交, 则这 $k$ 个圆盘的并集恰好含有 $A$ 的 $k$ 个特征值.

 

[詹兴致矩阵论习题参考解答]习题1.12

  12. (Sherman-Morrison-Woodbury 公式) 设 $A\in M_n$, $B,C\in M_{n,k}$ 使得 $I+C^*A^{-1}B$ 可逆, 其中 $I$ 是单位阵. 证明 $A+BC^*$ 可逆且 $$\bex (A+BC^*)^{-1} =A^{-1} -A^{-1}B (I+C^*A^{-1}B)^{-1}C^*A^{-1}. \eex$$

 

[詹兴致矩阵论习题参考解答]习题1.13

  13. (Li-Poon) 证明: 每个实方阵都可以写成 $4$ 个实正交矩阵的线性组合, 即若 $A$ 是个实方阵, 则存在实正交矩阵 $Q_i$ 和实数 $r_i$, $i=1,2,3,4$, 使得 $$\bex A=r_1Q_1+r_2Q_2+r_3Q_3+r_4Q_4. \eex$$

 

[詹兴致矩阵论习题参考解答]习题1.14

  14. 如果映射 $f:M_n\to M_n$ 按某个固定的模式将 $M_n$ 中的每个矩阵的元素重排, 则称 $f$ 为一个置换算子. 怎样的置换算子保持矩阵的特征值不变? 保持秩不变?

 

 

 

[詹兴致矩阵论习题参考解答]目录