首页 > 代码库 > [詹兴致矩阵论习题参考解答]习题3.13
[詹兴致矩阵论习题参考解答]习题3.13
13. (Caylay 变换) 记 $i=\sqrt{-1}$. 若 $A$ 为 Hermite 矩阵, 则 $$\bex \phi(A)=(A-iI)(A+iI)^{-1} \eex$$ 是一个酉矩阵.
证明: $$\beex \bea \phi(A)^*\phi(A) &=(A-iI)^{-1}(A+iI)(A-iI)(A+iI)^{-1}\\ &=(A-iI)^{-1}(A^2+I)(A+iI)^{-1}\\ &=(A-iI)^{-1}(A-iI)(A+iI)(A+iI)^{-1}\\ &=I. \eea \eeex$$
[詹兴致矩阵论习题参考解答]习题3.13
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。