首页 > 代码库 > [詹兴致矩阵论习题参考解答]习题3.10
[詹兴致矩阵论习题参考解答]习题3.10
10. 设 $A,B$ 是同阶半正定矩阵, $0\leq s\leq 1$. 证明: $$\bex \sen{A^sB^s}_\infty \leq \sen{AB}_\infty^s. \eex$$
证明:
(1). 先证明: $A$ 的谱范数就是 $A$ 的最大奇异值. 事实上, $$\beex \bea \sen{A}_\infty^2 &=\max_{\sen{x}_2=1}\sen{Ax}_2^2\\ &=\max_{\sen{x}_2=1}x^*A^*Ax\\ &=\max_{\sen{x}_2=1}x^*VV^*A^*U^*UAVV^*x\\ &=\max_{\sen{y}_2=1}y^*\diag(s_1^2,\cdots,s_p^2)y\quad\sex{y=V^*x}\\ &=\max_{\sen{y}_2=1}\sum_{i=1}^p s_i^2|y_i|^2\\ &=s_1^2. \eea \eeex$$
(2). 往证题目. $$\beex \bea \sen{A^sB^s}_\infty^2 &=\lm_1(B^sA^sA^sB^s)\\ &=\lm_1(A^{2s}B^{2s})\\ &\leq \sez{\lm_1(A^2B^2)}^s\quad\sex{\mbox{定理 3.25}}\\ &=\sez{\lm_1(BAAB)}^s\\ &=[\sen{AB}_\infty^2]^s. \eea \eeex$$
[詹兴致矩阵论习题参考解答]习题3.10
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。