首页 > 代码库 > 折线分割平面(杭电2050)(递归的几种类型,数学推导)
折线分割平面(杭电2050)(递归的几种类型,数学推导)
折线分割平面
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 17706 Accepted Submission(s): 12192
Problem Description
我们看到过很多直线分割平面的题目,今天的这个题目稍微有些变化,我们要求的是n条折线分割平面的最大数目。比如,一条折线可以将平面分成两部分,两条折线最多可以将平面分成7部分,具体如下所示。
Input
输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(0<n<=10000),表示折线的数量。
Output
对于每个测试实例,请输出平面的最大分割数,每个实例的输出占一行。
Sample Input
2 1 2
Sample Output
2 7
Author
lcy
注明出处,摘自 http://www.cnblogs.com/chaosheng/archive/2012/01/26/2329583.html
(1) n条直线最多分平面问题
题目大致如:n条直线,最多可以把平面分为多少个区域。
析:可能你以前就见过这题目,这充其量是一道初中的思考题。
但一个类型的题目还是从简单的入手,才容易发现规律。当有n-1条直线时,
平面最多被分成了f(n-1)个区域。则第n条直线要是切成的区域数最多,
就必须与每条直线相交且不能有同一交点。这样就会得到n-1个交点。
这些交点将第n条直线分为2条射线和n-2条线断。而每条射线和线断将以
有的区域一分为二。这样就多出了2+(n-2)个区域。
故:f(n)=f(n-1)+n=f(n-2)+(n-1)+n
……
=f(1)+1+2+……+n
=n(n+1)/2+1
(2) 折线分平面(hdu2050)
根据直线分平面可知,由交点决定了射线和线段的条数,进而决定了新增的区域数。
当n-1条折线时,区域数为f(n-1)。为了使增加的区域最多,则折线的两边的线段
要和n-1条折线的边,即2*(n-1)条线段相交。那么新增的线段数为4*(n-1),
射线数为2。但要注意的是,折线本身相邻的两线段只能增加一个区域。
故:f(n)=f(n-1)+4(n-1)+2-1=f(n-1)+4(n-1)+1
=f(n-2)+4(n-2)+4(n-1)+2
……
=f(1)+4+4*2+……+4(n-1)+(n-1)
=2n^2-n+1
(3) 封闭曲线分平面问题
题目大致如设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,
且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
析:当n-1个圆时,区域数为f(n-1).那么第n个圆就必须与前n-1个圆相交,
则第n个圆被分为2(n-1)段线段,增加了2(n-1)个区域。
故: f(n)=f(n-1)+2(n-1)=f(1)+2+4+……+2(n-1)
=n^2-n+2
(4)平面分割空间问题(hdu1290)
由二维的分割问题可知,平面分割与线之间的交点有关,即交点决定射线和线段的条数,
从而决定新增的区域数。试想在三维中则是否与平面的交线有关呢?当有n-1个平面时,
分割的空间数为f(n-1)。要有最多的空间数,则第n个平面需与前n-1个平面相交,
且不能有共同的交线。即最多有n-1 条交线。而这n-1条交线把第n个平面最多分割成
g(n-1)个区域。(g(n)为(1)中的直线分平面的个数)此平面将原有的空间一分
为二,则最多增加g(n-1)个空间。
故:f=f(n-1)+g(n-1) ps:g(n)=n(n+1)/2+1
=f(n-2)+g(n-2)+g(n-1)
……
=f(1)+g(1)+g(2)+……+g(n-1)
=2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)
=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1
=(n^3+5n)/6+1
(1) n条直线最多分平面问题
题目大致如:n条直线,最多可以把平面分为多少个区域。
析:可能你以前就见过这题目,这充其量是一道初中的思考题。
但一个类型的题目还是从简单的入手,才容易发现规律。当有n-1条直线时,
平面最多被分成了f(n-1)个区域。则第n条直线要是切成的区域数最多,
就必须与每条直线相交且不能有同一交点。这样就会得到n-1个交点。
这些交点将第n条直线分为2条射线和n-2条线断。而每条射线和线断将以
有的区域一分为二。这样就多出了2+(n-2)个区域。
故:f(n)=f(n-1)+n=f(n-2)+(n-1)+n
……
=f(1)+1+2+……+n
=n(n+1)/2+1
(2) 折线分平面(hdu2050)
根据直线分平面可知,由交点决定了射线和线段的条数,进而决定了新增的区域数。
当n-1条折线时,区域数为f(n-1)。为了使增加的区域最多,则折线的两边的线段
要和n-1条折线的边,即2*(n-1)条线段相交。那么新增的线段数为4*(n-1),
射线数为2。但要注意的是,折线本身相邻的两线段只能增加一个区域。
故:f(n)=f(n-1)+4(n-1)+2-1=f(n-1)+4(n-1)+1
=f(n-2)+4(n-2)+4(n-1)+2
……
=f(1)+4+4*2+……+4(n-1)+(n-1)
=2n^2-n+1
(3) 封闭曲线分平面问题
题目大致如设有n条封闭曲线画在平面上,而任何两条封闭曲线恰好相交于两点,
且任何三条封闭曲线不相交于同一点,问这些封闭曲线把平面分割成的区域个数。
析:当n-1个圆时,区域数为f(n-1).那么第n个圆就必须与前n-1个圆相交,
则第n个圆被分为2(n-1)段线段,增加了2(n-1)个区域。
故: f(n)=f(n-1)+2(n-1)=f(1)+2+4+……+2(n-1)
=n^2-n+2
(4)平面分割空间问题(hdu1290)
由二维的分割问题可知,平面分割与线之间的交点有关,即交点决定射线和线段的条数,
从而决定新增的区域数。试想在三维中则是否与平面的交线有关呢?当有n-1个平面时,
分割的空间数为f(n-1)。要有最多的空间数,则第n个平面需与前n-1个平面相交,
且不能有共同的交线。即最多有n-1 条交线。而这n-1条交线把第n个平面最多分割成
g(n-1)个区域。(g(n)为(1)中的直线分平面的个数)此平面将原有的空间一分
为二,则最多增加g(n-1)个空间。
故:f=f(n-1)+g(n-1) ps:g(n)=n(n+1)/2+1
=f(n-2)+g(n-2)+g(n-1)
……
=f(1)+g(1)+g(2)+……+g(n-1)
=2+(1*2+2*3+3*4+……+(n-1)n)/2+(n-1)
=(1+2^2+3^2+4^2+……+n^2-1-2-3-……-n )/2+n+1
=(n^3+5n)/6+1
#include<stdio.h> int main() { int test,n; scanf("%d",&test); while(test--) { scanf("%d",&n); printf("%d\n",2*n*n-n+1); } return 0; }
折线分割平面(杭电2050)(递归的几种类型,数学推导)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。