首页 > 代码库 > 经典算法题每日演练——第十七题 Dijkstra算法

经典算法题每日演练——第十七题 Dijkstra算法

原文:经典算法题每日演练——第十七题 Dijkstra算法

 

      或许在生活中,经常会碰到针对某一个问题,在众多的限制条件下,如何去寻找一个最优解?可能大家想到了很多诸如“线性规划”,“动态规划”

这些经典策略,当然有的问题我们可以用贪心来寻求整体最优解,在图论中一个典型的贪心法求最优解的例子就莫过于“最短路径”的问题。

 

一:概序

   从下图中我要寻找V0到V3的最短路径,你会发现通往他们的两点路径有很多:V0->V4->V3,V0->V1->V3,当然你会认为前者是你要找的最短

路径,那如果说图的顶点非常多,你还会这么轻易的找到吗?下面我们就要将刚才我们那点贪心的思维系统的整理下。

技术分享

二:构建

    如果大家已经了解Prim算法,那么Dijkstra算法只是在它的上面延伸了下,其实也是很简单的。

1.边节点

  这里有点不一样的地方就是我在边上面定义一个vertexs来记录贪心搜索到某一个节点时曾经走过的节点,比如从V0贪心搜索到V3时,我们V3

的vertexs可能存放着V0,V4,V3这些曾今走过的节点,或许最后这三个节点就是我们要寻找的最短路径。

 1 #region 边的信息 2         /// <summary> 3         /// 边的信息 4         /// </summary> 5         public class Edge 6         { 7             //开始边 8             public int startEdge; 9 10             //结束边11             public int endEdge;12 13             //权重14             public int weight;15 16             //是否使用17             public bool isUse;18 19             //累计顶点20             public HashSet<int> vertexs = new HashSet<int>();21         }22         #endregion

2.Dijkstra算法

技术分享

首先我们分析下Dijkstra算法的步骤:

有集合M={V0,V1,V2,V3,V4}这样5个元素,我们用

TempVertex表示该顶点是否使用。

Weight表示该Path的权重(默认都为MaxValue)。

Path表示该顶点的总权重。

①. 从集合M中挑选顶点V0为起始点。给V0的所有邻接点赋值,要赋值的前提是要赋值的weight要小于原始的weight,并且排除已经访问过

     的顶点,然后挑选当前最小的weight作为下一次贪心搜索的起点,就这样V0V1为挑选为最短路径,如图2。

②. 我们继续从V1这个顶点开始给邻接点以同样的方式赋值,最后我们发现V0V4为最短路径。也就是图3。

。。。

③. 最后所有顶点的最短路径就这样求出来了 。

 1 #region Dijkstra算法 2         /// <summary> 3         /// Dijkstra算法 4         /// </summary> 5         public Dictionary<int, Edge> Dijkstra() 6         { 7             //收集顶点的相邻边 8             Dictionary<int, Edge> dic_edges = new Dictionary<int, Edge>(); 9 10             //weight=MaxValue:标识没有边11             for (int i = 0; i < graph.vertexsNum; i++)12             {13                 //起始边14                 var startEdge = i;15 16                 dic_edges.Add(startEdge, new Edge() { weight = int.MaxValue });17             }18 19             //取第一个顶点20             var start = 0;21 22             for (int i = 0; i < graph.vertexsNum; i++)23             {24                 //标记该顶点已经使用过25                 dic_edges[start].isUse = true;26 27                 for (int j = 1; j < graph.vertexsNum; j++)28                 {29                     var end = j;30 31                     //取到相邻边的权重32                     var weight = graph.edges[start, end];33 34                     //赋较小的权重35                     if (weight < dic_edges[end].weight)36                     {37                         //与上一个顶点的权值累加38                         var totalweight = dic_edges[start].weight == int.MaxValue ? weight : dic_edges[start].weight + weight;39 40                         if (totalweight < dic_edges[end].weight)41                         {42                             //将该顶点的相邻边加入到集合中43                             dic_edges[end] = new Edge()44                             {45                                 startEdge = start,46                                 endEdge = end,47                                 weight = totalweight48                             };49 50                             //将上一个边的节点的vertex累加51                             dic_edges[end].vertexs = new HashSet<int>(dic_edges[start].vertexs);52 53                             dic_edges[end].vertexs.Add(start);54                             dic_edges[end].vertexs.Add(end);55                         }56                     }57                 }58 59                 var min = int.MaxValue;60 61                 //下一个进行比较的顶点62                 int minkey = 0;63 64                 //取start邻接边中的最小值65                 foreach (var key in dic_edges.Keys)66                 {67                     //取当前 最小的 key(使用过的除外)68                     if (min > dic_edges[key].weight && !dic_edges[key].isUse)69                     {70                         min = dic_edges[key].weight;71                         minkey = key;72                     }73                 }74 75                 //从邻接边的顶点再开始找76                 start = minkey;77             }78 79             return dic_edges;80         }81         #endregion

 

总的代码:复杂度很烂O(N2)。。。

using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Diagnostics;using System.Threading;using System.IO;using System.Threading.Tasks;namespace ConsoleApplication2{    public class Program    {        public static void Main()        {            Dictionary<int, string> dic = new Dictionary<int, string>();            MatrixGraph graph = new MatrixGraph();            graph.Build();            var result = graph.Dijkstra();            Console.WriteLine("各节点的最短路径为:");            foreach (var key in result.Keys)            {                Console.WriteLine("{0}", string.Join("->", result[key].vertexs));            }            Console.Read();        }    }    #region 定义矩阵节点    /// <summary>    /// 定义矩阵节点    /// </summary>    public class MatrixGraph    {        Graph graph = new Graph();        public class Graph        {            /// <summary>            /// 顶点信息            /// </summary>            public int[] vertexs;            /// <summary>            /// 边的条数            /// </summary>            public int[,] edges;            /// <summary>            /// 顶点个数            /// </summary>            public int vertexsNum;            /// <summary>            /// 边的个数            /// </summary>            public int edgesNum;        }        #region 矩阵的构建        /// <summary>        /// 矩阵的构建        /// </summary>        public void Build()        {            //顶点数            graph.vertexsNum = 5;            //边数            graph.edgesNum = 6;            graph.vertexs = new int[graph.vertexsNum];            graph.edges = new int[graph.vertexsNum, graph.vertexsNum];            //构建二维数组            for (int i = 0; i < graph.vertexsNum; i++)            {                //顶点                graph.vertexs[i] = i;                for (int j = 0; j < graph.vertexsNum; j++)                {                    graph.edges[i, j] = int.MaxValue;                }            }            //定义 6 条边            graph.edges[0, 1] = graph.edges[1, 0] = 2;            graph.edges[0, 2] = graph.edges[2, 0] = 5;            graph.edges[0, 4] = graph.edges[4, 0] = 3;            graph.edges[1, 3] = graph.edges[3, 1] = 4;            graph.edges[2, 4] = graph.edges[4, 2] = 5;            graph.edges[3, 4] = graph.edges[4, 3] = 2;        }        #endregion        #region 边的信息        /// <summary>        /// 边的信息        /// </summary>        public class Edge        {            //开始边            public int startEdge;            //结束边            public int endEdge;            //权重            public int weight;            //是否使用            public bool isUse;            //累计顶点            public HashSet<int> vertexs = new HashSet<int>();        }        #endregion        #region Dijkstra算法        /// <summary>        /// Dijkstra算法        /// </summary>        public Dictionary<int, Edge> Dijkstra()        {            //收集顶点的相邻边            Dictionary<int, Edge> dic_edges = new Dictionary<int, Edge>();            //weight=MaxValue:标识没有边            for (int i = 0; i < graph.vertexsNum; i++)            {                //起始边                var startEdge = i;                dic_edges.Add(startEdge, new Edge() { weight = int.MaxValue });            }            //取第一个顶点            var start = 0;            for (int i = 0; i < graph.vertexsNum; i++)            {                //标记该顶点已经使用过                dic_edges[start].isUse = true;                for (int j = 1; j < graph.vertexsNum; j++)                {                    var end = j;                    //取到相邻边的权重                    var weight = graph.edges[start, end];                    //赋较小的权重                    if (weight < dic_edges[end].weight)                    {                        //与上一个顶点的权值累加                        var totalweight = dic_edges[start].weight == int.MaxValue ? weight : dic_edges[start].weight + weight;                        if (totalweight < dic_edges[end].weight)                        {                            //将该顶点的相邻边加入到集合中                            dic_edges[end] = new Edge()                            {                                startEdge = start,                                endEdge = end,                                weight = totalweight                            };                            //将上一个边的节点的vertex累加                            dic_edges[end].vertexs = new HashSet<int>(dic_edges[start].vertexs);                            dic_edges[end].vertexs.Add(start);                            dic_edges[end].vertexs.Add(end);                        }                    }                }                var min = int.MaxValue;                //下一个进行比较的顶点                int minkey = 0;                //取start邻接边中的最小值                foreach (var key in dic_edges.Keys)                {                    //取当前 最小的 key(使用过的除外)                    if (min > dic_edges[key].weight && !dic_edges[key].isUse)                    {                        min = dic_edges[key].weight;                        minkey = key;                    }                }                //从邻接边的顶点再开始找                start = minkey;            }            return dic_edges;        }        #endregion    }    #endregion}

  

技术分享

 

经典算法题每日演练——第十七题 Dijkstra算法