首页 > 代码库 > A - 棋盘问题 POJ - 1321

A - 棋盘问题 POJ - 1321

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。 
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n 
当为-1 -1时表示输入结束。 
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1#..#4 4...#..#..#..#...-1 -1

Sample Output

21
/** @Author: lyuc* @Date:   2017-05-02 16:51:45* @Last Modified by:   lyuc* @Last Modified time: 2017-05-02 17:07:23*/#include <iostream>#include <stdio.h>#include <string.h>#define LL long longusing namespace std;int n,k;char mapn[10][10];int col[10];LL res=0;void dfs(int u,int co){//遍历到第几行    if(co==k){        res++;        return ;    }    if(u>=n) return ;    for(int i=0;i<n;i++){        if(col[i]) continue;        if(mapn[u][i]==#){            col[i]=1;            dfs(u+1,co+1);            col[i]=0;            }    }    dfs(u+1,co);}void init(){    memset(col,0,sizeof col);    res=0;}int main(){    // freopen("in.txt","r",stdin);    while(scanf("%d%d",&n,&k)!=EOF&&(n!=-1&&k!=-1)){        init();        for(int i=0;i<n;i++)            scanf("%s",mapn[i]);        dfs(0,0);        printf("%lld\n",res);    }    return 0;}

 

A - 棋盘问题 POJ - 1321