首页 > 代码库 > HDU 1875 畅通工程再续 (最小生成树 水)

HDU 1875 畅通工程再续 (最小生成树 水)


Problem Description
相信大家都听说一个“百岛湖”的地方吧,百岛湖的居民生活在不同的小岛中,当他们想去其他的小岛时都要通过划小船来实现。现在政府决定大力发展百岛湖,发展首先要解决的问题当然是交通问题,政府决定实现百岛湖的全畅通!经过考察小组RPRush对百岛湖的情况充分了解后,决定在符合条件的小岛间建上桥,所谓符合条件,就是2个小岛之间的距离不能小于10米,也不能大于1000米。当然,为了节省资金,只要求实现任意2个小岛之间有路通即可。其中桥的价格为 100元/米。
 


Input
输入包括多组数据。输入首先包括一个整数T(T <= 200),代表有T组数据。
每组数据首先是一个整数C(C <= 100),代表小岛的个数,接下来是C组坐标,代表每个小岛的坐标,这些坐标都是 0 <= x, y <= 1000的整数。
 


Output
每组输入数据输出一行,代表建桥的最小花费,结果保留一位小数。如果无法实现工程以达到全部畅通,输出”oh!”.
 


Sample Input
2 2 10 10 20 20 3 1 1 2 2 1000 1000
 


Sample Output
1414.2 oh!


总共最多有100个节点,那么边最大100*100/2,把所有 符合题意 的边都求出来,然后就是最小生成树了。


#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stack>
#define lson o<<1, l, m
#define rson o<<1|1, m+1, r
using namespace std;
typedef long long LL;
const int maxn = 105;
const int mod = 1000000007;
int n, t, fa[105];
double q;
struct C1{
    int st, en;
    double v;
}ed[6000];
struct C2 {
    int x, y;
}in[105];
double getdis(double x1, double y1, double x2, double y2) {
    return sqrt( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) );
}
bool cmp (C1 x, C1 y) {
    return x.v < y.v;
}
int Find (int x) {
    return x == fa[x] ? x : x = Find(fa[x]);
}
int main()
{
    scanf("%d", &t);
    while(t--) {
        int n;
        scanf("%d", &n);
        for(int i = 0; i < n; i++) scanf("%d%d", &in[i].x, &in[i].y);
        int k = 0;
        for(int i = 0; i < n-1; i++)
            for(int j = i+1; j < n; j++) {
                double tmp = getdis(in[i].x, in[i].y, in[j].x, in[j].y);
                if(tmp >= 10 && tmp <= 1000) {
                    ed[k].v = tmp*100;
                    ed[k].st = i;
                    ed[k++].en = j;
                }
            }
        sort(ed, ed+k, cmp);
        for(int i = 0; i <= 100; i++) fa[i] = i;
        double sum = 0;
        int cnt = 0;
        for(int i = 0; i <k; i++) {
            int pres = Find(ed[i].st), pree = Find(ed[i].en);
            if(pres != pree) {
                fa[pres] = pree;
                sum += ed[i].v;
                cnt++;
                if(cnt == n-1) break;
            }
        }
        if(cnt == n-1) printf("%.1lf\n", sum);
        else printf("oh!\n");
    }

    return 0;
}